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Purpose: 

1) To study immuno-surveillance of the brain in brain-associated inflammatory 

disorders, including multiple sclerosis and Alzheimer's disease, which are 

characterized with increased passage of immune cells across the BBB. 

2) To study the transport of drugs encapsulated in nanoparticles across the BBB by 

mononuclear leukocytes. 

 

Abstract of recent research 

Many drugs are not able to enter the brain due to the presence of the blood-brain barrier 
(BBB) and therefore cannot be used in the treatment of diseases of the brain. Since it is now 
known that the brain is under immunological surveillance, we hypothesized that phagocytic 
cells of the innate immune system, mainly neutrophils and monocytes, can be exploited as 
transporters of drugs to the brain. To target circulating mononuclear phagocytic cells, 
negatively-charged nano-sized liposomes were formulated encapsulating serotonin, a BBB 
impermeable neurological drug. Brain uptake, biodistribution, and the mechanism of brain 
transport were examined in vitro and in rats and rabbits by utilizing double-radiolabeled 3H 
(in the membrane) and 14C-serotonin (in the core), and liposomes with fluorescent markers 
(membrane and core). The brain uptake of liposomal serotonin was significantly higher 
(0.138%±0.034 and 0.097%±0.011, vs. 0.068%±0.02 and 0.057%±0.01, 4hr and 24hr after 
IV administration in rats, serotonin liposomes and in solution, respectively). The same brain 
uptake of both empty and serotonin liposomes, the co-localization in the brain of both 
markers, and the unchanged ratio of 3H:14C suggest that intact liposomes entered the brain. 
Since treatment of animals by liposomal alendronate resulted with inhibition of monocytes 
but not of neutrophils, and with no brain delivery, it is suggested that monocytes are the main 
transporters of liposomes to the brain. 
 
Key words: Blood-Brain Barrier, drug delivery, liposomes, nanoparticles, leukocytes 
monocytes, neutrophils, brain transport. 
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Onter the brain due to the presence of the blood-
^
brain barrier (BBB) and therefore

cannot be used in the treatment of diseases of the brain. Since it is now known that the brain is under
immunological surveillance, we hypothesized that phagocytic cells of the innate immune system, mainly
neutrophils and monocytes, can be exploited as transporters of drugs to the brain. To target circulating
mononuclear phagocytic cells, negatively-

^
charged nano-

^
sized liposomes were formulated encapsulating

serotonin, a BBB impermeable neurological drug. Brain uptake, biodistribution, and the mechanism of brain
transport were examined in vitro and in rats and rabbits by utilizing double-

^
radiolabeled 3H (in the

membrane) and 14C-
^
serotonin (in the core), and liposomes with fluorescent markers (membrane and core).

The brain uptake of liposomal serotonin was significantly higher (0.138%±0.034 and 0.097%±0.011, vs.
0.068%±0.02 and 0.057%±0.01, 4 h

^
and 24 h

^
after IV administration in rats, serotonin liposomes and in

solution, respectively). The same brain uptake of both empty and serotonin liposomes, the co-
^
localization in

the brain of both markers, and the unchanged ratio of 3H:14C suggest that intact liposomes entered the brain.
Since treatment of animals by liposomal alendronate resulted with inhibition of monocytes but not of
neutrophils, and with no brain delivery, it is suggested that monocytes are the main transporters of
liposomes to the brain.

© 2008 Elsevier B.V. All rights reserved.
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EC1. Introduction

The limiting factor in the development of new drugs for brain
diseases is the blood-

^
brain barrier (BBB) [1]. The brain microvessel

endothelial cells form a continuous layer of cells and extracellular
matrix, tight extracellular junctions, and reduced levels of pinocytic
activity. In addition, solutes crossing the cell membrane are subse-
quently exposed to degrading enzymes present in large numbers
inside the endothelial cells and to active efflux pumps. Even small
molecules do not cross the BBB in pharmacologically significant
amounts, unless themolecule is both lipid soluble and has a molecular
weight (MW) b400 Da [2]. Most drugs lack these dual molecular
characteristics, and do not cross the BBB, including all products from
biotechnology or gene therapy [3].

The delivery of drugs to the brain has traditionally been
approached with medicinal chemistry or barrier disruption and
neurosurgical based invasive brain drug delivery [1,4,5]. Although
some of the more recent methods are promising, no method has yet
proved to be efficient, and the invasive procedures are by nature
67
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severely limited. Additional approaches that have been studied for
BBB delivery are special lipid based delivery systems [6], targeted
liposomes [7–10], and immunoliposomes [11]. However, some of
these methods were not successfully reproduced, and were found
more effective in inflammatory or pathological conditions when the
permeability of the BBB is increased [9,12,13]. Polymeric nanoparticles
(NP) have shown some promise [14–18]. However, the transport
mechanism remains controversial; it is unclear whether they
penetrate by low-

^
density lipoprotein

^
receptor-mediated pathway

[19], receptor-
^
mediated endocytosis of apolipoprotein-

^
coated parti-

cles [6], caveolae-
^
mediated pathway [20], or mediated by disruption

of the BBB due to a toxic effect [21,22].
The brain has often been considered an immunologically privi-

leged organ, and the presence of the BBB was thought to prevent the
entry of immune cells from the peripheral circulation into the brain.
However, it is now accepted that the brain is under immunological
surveillance [23,24]. The BBB allows the selective entry of leukocytes
into the central nervous system including monocytes, neutrophils and
lymphocytes [25–29].

We hypothesized that phagocytic cells of the innate immune
system, mainly neutrophils and monocytes can be exploited as
transporters of drugs to the brain. Loading these cells with the drug
can be achieved by administering the drug of choice in a particulated
dosage form such as liposomes or polymeric NP, which are
ain by monocytes following phagocytosis of liposomes, J. Controlled
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phagocytized in circulation by these cells [30–37]. The so-
^
called,

‘conventional’ liposomes, are not hydrophilic (‘pegylated’), do not
have a neutrally-

^
charged membrane, and are not of ultra-

^
small size

[30,33,38–40]. Thus, they are most suitable for effective phagocytosis
in the circulation by monocytes and neutrophils. However, the
formulation should not inhibit the transporting cells but rather
activate the mononuclear phagocytic system (MPS). In addition, the
relatively long circulation time of the liposomes in circulating
phagocytic cells rather than rapid disposition in macrophage-

^
rich

organs (e.g., liver and spleen) is advantageous for brain transport. Last
but not least, it is expected that if the drug is not metabolized in the
lysosome, it will be excreted from the endocytosing cell in the brain.

In this work, serotonin, a brain impermeable physiological
neurotransmitter [41], was encapsulated in

^
negatively-charged lipo-

somes. The biodistribution and brain uptake of empty liposomes and
liposomal serotonin was studied in rabbits and rats. In addition, the
mechanism of transport was elucidated by studying uptake in
monocytes and neutrophils in vitro and in vivo.

2. Materials and
^
methods

2.1. Liposomes preparation

Liposomes were formulated with distearoylphosphatidylcholine
(DSPC), distearoyl phosphatidyl glycerol (DSPG) (Lipoid GmbH,
Ludwigshafen, Germany) and cholesterol (Sigma, St. Louis, MO). The
liposomal formulations were prepared by the modified thin film
hydration method [42]. Phospholipids and cholesterol (DSPC:DSPG:
CHOL, 3:1:

^
2 molar ratio) were dissolved in tert-

^
butanol and

lyophilized to produce a film. A homogeneous aqueous solution of
serotonin (50 mM) (as the binoxalate salt; Sigma, St. Louis, MO) was
added to the film, and the liposomes thus obtainedwere homogenized
to 200 nm by means of an extruder (Lipex Biomembranes, Vancouver,
Canada). To remove un-

^
encapsulated drug, the liposomeswere passed

through a Sephadex G-
^
50 column and eluted with MES/HEPES buffer

pH 7.2 (50 mM MES, 50 mM HEPES, 75 mM NaCl). The formulation
volume was adjusted to 8.0 ml.

^
Double-radiolabeled serotonin liposomes were prepared similarly

with 3H-
^̂
Cholesterylhexadecylether (1.5 μCi) (PerkinElmer Boston,

USA) and an aqueous solution of 14C-
^
serotonin (50 mM, 70 μCi;

PerkinElmer Boston, USA). Fluorescent liposomes were prepared
similarly with rhodamine and 1-

^
hydroxypyrene-

^
3,6,8 trisulfonic acid

(Avanti Polar Lipids, Alabaster, AL). Alendronate liposomes for study-
ing brain uptake under monocytes depletion, were prepared similarly
with sodium alendronate (200 mM) as reported previously [37,43].

2.2. In vivo brain uptake studies

New Zealand White rabbits and male Sprague Dawley rats (Harlan
Laboratories, Jerusalem, Israel), weighing 2.5 to 3.5 kg and 140 to
210 g, respectively, were used in accordance with the guidelines for
animal care of the Hebrew University of Jerusalem and National
Institutes of Health (USA). Animals were fed standard laboratory chow
and tap water ad libitum. Experiments were performed under
anesthesia by an IP injection of ketamine (80 mg/kg, Fort Dodge
Animal Health, USA) and xylazine (5 mg/kg, V.M.D. NV, Belgium)
solutions.

2.
^
2.1. Quantitative brain penetration
Male rats (Sprague Dawley™, Harlan Laboratories, Jerusalem,

Israel) weighing 220–
^
240 g were used for brain penetration studies.

Liposomes containing 14C-
^
labeled serotonin (0.5 μCi, n=10), empty

3H-
^
labeled liposomes (1.5 μCi, n=8) and 14C-

^
serotonin solution

(0.5 μCi, n=10) were IV injected into the tail vein of rats (after gentle
swabbing with warm water). One half of the rats in each group were
euthanized 4 h

^
or 24 h

^^
post-injection, followed by perfusion with
Please cite this article as: E. Afergan, et al., Delivery of serotonin to the br
Rel. (2008), doi:10.1016/j.jconrel.2008.08.017
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1saline (23G needle and a 50 ml syringe) directly to the left ventricle
1and subsequent severing of the jugular vein for 10 min or until the
1perfusate was clear. The brains were excised, and dissolved in 1 ml
1Solvable per 0.1 g of tissue (Perkin Elmer, The Netherlands), and
1incubated overnight at 60 °C until complete solubilization. The
1obtained solution was decolorized with 0.2 ml of 35% hydrogen
1peroxide per 1 ml of solvable until the solution turned to pale yellow.
1The excess of hydrogen peroxide was inactivated by heating the
1samples at 60 °C overnight. After mixing with 10 ml of Ultima Gold
1scintillation cocktail (Perkin Elmer, The Netherlands), the radioactivity
1(DPM) was counted by means of a liquid scintillation analyzer
1(Packard, Tri-

^
carb 2900TR, USA) against a calibration curve of

1
^̂̂
R2=0.997.

12.2.2
^
. Qualitative brain penetration

1Qualitative assessment of liposome disposition in brain tissue was
1carried out in rabbits (n=8) following IV injections of fluorescent
1liposomes. Animals were randomly assigned to treatment groups of
1single labeled fluorescent liposomes (Rhodamine-

^
DSPE, membrane

1marker),
^
double-labeled fluorescent liposomes of Rhodamine-

^
DSPE

1and 1-
^
hydroxypyrene-

^
3,6,8 trisulfonic acid (hydrophilic core marker),

1Rhodamine-
^
DSPE liposomal alendronate (3 mg/kg), and saline

1(control group). The animals were sacrificed 4 h
^̂
post-injection after

1which the harvested brain tissue was rinsed with saline and n-
^
octyl β-

1
^
D-
^
gluco-

^
pyranoside (OCT)(Sakura, U.S.A), flash frozen in liquid

1nitrogen, and stored at −
^
70 °C until analysis. Tissues were sectioned

1(frontal lobe, 2 sections, and temporal lobe, parietal lobe and occipital
1lobe) and mounted on slides. Liposome uptake was observed and
1recorded by means of confocal microscopy (Zeiss LSM 410, Germany).

12.2.3
^
. Body distribution

1Sprague Dawley™ rats (140–
^
210 g), housed in metabolic cages,

1were IV injected (tail vein) with double-
^
radiolabeled liposomes (3H-

1
^̂
Cholesteryl-

^
hexadecy-

^
lether and 14C-

^
serotonin, 0.4 μCi and 1 μCi,

1respectively, injected to each rat, n=9), or with 14C-
^
serotonin solution

1(1 µCi, n=6), and were sacrificed 4 h
^
later. Blood samples were

1collected before injection and at sacrificing. Urine was collected, and
1the following organs were removed completely at sacrifice: brain,
1spinal cord, kidneys, heart, lungs, liver, spleen, tibia bone, and
1pancreas. Muscle specimens were excised near the femoral. Each
1specimen was weighed and frozen at −

^
70 °

^
C. Organs or tissues were

1burned and analyzed by means of a Sample Oxidizer (Packard, model
1307, Switzerland). Eluting solutions and scintillation cocktails were,
1Monophase for 3H, and Carbosorbe+Permafluore for 14C (PerkinElmer,
1MA, USA). The scintillation bottles were left overnight and counted by
1means of a liquid scintillation analyzer (Packard, Tri-

^
carb 2900TR,

1USA), against calibration curves of
^̂̂
R2
^
N0.962.

12.3. Endocytosis of liposomes by monocytes and neutrophils

12.3.1. Animal studies
1Qualitative assessment of liposome uptake by monocytes and
1neutrophils was carried out in

^
vivo by injecting fluorescent-

^
labeled

1liposomes to rabbits (n=4). At 4 h
^
post-

^
injection, cells were isolated

1from blood specimens using Ficoll and 70% dextrose gradients (Sigma-
1

^
Aldrich, Israel), andwere centrifuged (4 °C,1500 RPM, 5min). The cells

1were washed 3 times with PBS, fixed with formaldehyde (4%, 4 min),
1and further washed 3 times with PBS. Liposome uptake was observed
1and recorded by means of confocal microscopy.
1To quantify the internalization of liposomes by monocytes and
1granulocytes, liposomes labeled with dextran-

^
FITC (Sigma-

^
Aldrich,

1Israel) were injected IV to rabbits (n=3). Blood samples were taken
1after 4 h

^
, 24 h

^
, 48 h

^
and 7 days, and analyzed by fluorescence activated

1cell sorting (FACS), as previously described [35]. Whole blood (100 μl)
1specimens were labeled with mouse

^
anti-human R-

^
phycoerythrin-

1
^
conjugated anti-

^
CD14 (Dako, Denmark). Red blood cells were lysed
ain by monocytes following phagocytosis of liposomes, J. Controlled
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Fig. 1. Representative confocal microscopy images depicting rabbits' brain sections
(Frontal lobe, Broca's area) 4 h after IV injection of double-labeled fluorescent liposomes.
a) Fluorescent core marker (1-hydroxypyrene-3,6,8 trisulfonic acid, green; b) lipids
fluorescent marker (Rhodamin-DSPE, red; c) merged images demonstrating overlap of
liposomes core and lipids (yellow) and their co-localization (n=2); d) Background,
differential interference contrast (Nomarski's) image of the cells shown (×40). Similar
images were obtained in other regions.

Table 1 t1:1

The tissue biodistribution of serotonin solution and liposomal serotonin 4 h following IV
injection to rats (14C serotonin counts)

t1:2
t1:3Free serotonin Serotonin liposomes

t1:4%, (DPM/g tissue)/dose±SD %, (DPM/g tissue)/dose±SD

n=6 n=9

t1:6Spinal cord 0.07±0.02 0.10±0.03⁎
t1:7Lungs 0.43±0.05 0.55±0.18
t1:8Kidneys 0.35±0.06 0.32±0.08
t1:9Pancreas 0.09±0.03 0.25±0.11⁎
t1:10Liver 0.27±0.07 0.98±0.15⁎
t1:11Spleen 2.39±0.45 17.16±1.97⁎
t1:12Urine 20.89±5.96 5.61±1.39⁎
t1:13Plasma 0.08±0.045 1.25±0.21⁎

⁎pb0.05. t1:14
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(FACS lysing solution, B&D, USA), and the cells suspensionwas washed
twice with PBS containing 1% fetal calf serum. The accumulation of
fluorescent liposomes within monocytes and granulocytes, and their
percentage of total white blood cells were determined on the basis of
relative size, side scattering and fluorescence by FACS (Becton-

^
Dickinson, USA). Similarly, the inhibitory effect of alendronate
liposomes on monocytes and granulocytes was evaluated following
IV injection (3 mg/kg, n=3).

2.3.2. Human monocytes and neutrophils
Human monocytes and neutrophils were isolated from the blood

of human donors (n=3) using Ficoll and 70% dextrose gradients
(Sigma-

^
Aldrich, Israel), and centrifuged (4 °C, 1500 RPM, 5 min). Cells

were grown in RPMI (Beit Haemek, Israel) enriched with 10% FCS,
2 mM

^
L-
^
glutamine, 10 mM HEPES, 100 units/ml penicillin, 0.1 mg/ml

streptomycin, adjusted to contain 4.5 g/l glucose and 1.0 sodium
pyruvate, and incubated at 8% CO2, 37 °C. Qualitative cellular uptake
was observed by confocal microscopy.
UN
C

Fig. 2. Serotonin concentration in the brain of rats after IV administration of 3H-empty
liposomes (n=4, at each time point), 14C-serotonin in liposomes (n=5, at each time
point), and in solution (n=5, at each time point). (⁎pb0.05.)
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^
. Statistical analysis

Comparisons among treatment groups were made by the unpaired
t-
^
student

^
's test or by 2-

^
way analysis of variance (ANOVA) followed by

Tukey test. Differences were determined statistically significant with
pb0.05. Data are expressed as mean+SD.

^
3. Results

^
3.1. Serotonin liposomes

The serotonin liposomes obtained were composed of distearoyl-
phosphatidylcholine (DSPC), distearoyl phosphatidyl glycerol (DSPG)
and cholesterol [DSPC: DSPG: CHOL, 3:1:

^
2molar ratio), size of 169.32±

36.32 nm, zeta potential of −
^
29±1.9

^
mV, and a 10% encapsulation yield

of the added serotonin concentration (50 mM). The formulation was
found stable for over one month (no physicochemical changes,
including no aggregation, and no leakage of the drug).

^
3.2. Brain transport

Brain penetration was evaluated qualitatively by confocal micro-
scopy following injection of

^
double-labeled liposomes with the

hydrophobic (Rhodamine-
^
DSPE) and hydrophilic (1-

^
Hydroxypyren-

^
3,6,8-

^
Trisulfonic acid) fluorescent markers, embedded in the liposome

membrane and in the aqueous core, respectively. It was found that
liposomes with both markers were transported to the brain. Co-

^
localization images demonstrated that intact liposomes penetrated
the brain (Fig. 1).

Next we examined quantitatively the brain transport of empty and
serotonin liposomes. A significantly higher uptake of serotonin was
detected in the brain of rats following its administration in liposomes
in comparison to solution (Fig. 2). Serotonin concentration in the brain
4 h

^
after administration was 0.138%±0.034 and 0.068%±0.02,

serotonin liposomes and serotonin in solution, respectively. Similarly,
Fig. 3. Tissue biodistribution of double-radiolabeled serotonin liposomes (3H in the lipid
membrane, and 14C-serotonin) analyzed for both radiolabels, 4 h following IV injection
to rats (n=9, ⁎pb0.05).
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Fig. 4.Qualitative assessment of liposome uptake bymonocytes and neutrophils in rabbit blood 4 h after IV injection (left panel), and in humanmonocytes and neutrophils after 4 h of
incubation (right panel). The confocal microscopy images depict internalization of fluorescent-labeled liposomes with Rhodamin-DSPE (liposome membrane, red) and 1-
hydroxypyrene-3,6,8 trisulfonic acid (aqueous core, green). Confocal cross-sections verified cell internalization (middle panel).

Fig. 5. Quantification of liposomes internalization by circulating monocytes and granulocytes (neutrophils) in rabbit blood by means of fluorescence activated cell sorting (FACS).
Liposomes were labeled with dextran-FITC in the liposome core (n=3). Positive CD14 cells (monocytes, red, granulocytes, yellow) endocytosing dextran-FITC liposomes are shown in
the upper right quadrant.
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Fig. 6. Monocytes and neutrophils levels in rabbit blood over time after the
administration of liposomes containing alendronate (IV, 3 mg/kg, n=3). Positive CD14
cells (monocytes and granulocytes) were analyzed by fluorescence activated cell sorting
(FACS). Note the marked depletion of monocytes in contrast to the increased number of
granulocytes returning to basal levels after 7 days.
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after 24 h

^
, 0.097%±0.011 and 0.057%±0.01, serotonin liposomes and

serotonin in solution groups, respectively, were found in the
^
animals'

brains. The encapsulation of serotonin in liposomes did not affect
liposome transport to the brain and was dependent on liposome
penetration to the brain. Brain uptake of empty liposomes was, 0.12%±
0.03 and 0.11%±0.01, after 4 h

^
and 24 h

^
, respectively, similar to the

uptake of loaded liposomes after 4 h
^
and 24 h

^
, 0.138%±0.034 and

0.097%±0.011, respectively (Fig. 2).

3.3
^
. Body distribution

After evaluating brain transport we assessed the body distribution
of liposomes in order to validate the altered biodistribution of
serotonin. As expected, a profound accumulation of liposomes in the
spleen and liver was detected (Table 1). A significant difference in the
biodistribution of serotonin in liposomes vs. in solution was found in
several organs: spleen (17.16%±1.97 vs. 2.39%±0.45), liver, (0.98%±0.15
vs. 0.27%±0.07), spinal cord (0.10%±0.03 vs. 0.07%±0.02), pancreas
(0.25%±0.11 vs. 0.09%±0.03), plasma (1.25%±0.21 vs. 0.08%±0.045),
and urine (5.61%±1.39 vs. 20.89%±5.96), respectively (Table 1).

To further validate that intact serotonin liposomes are transported
to the brain, the uptake and biodistribution of both serotonin and
lipids was examined following the administration of double-

^
radiolabeled liposomes, 14C-

^
serotonin and 3H lipids. Harvested organs

weremeasured for 3H to 14C ratio normalized to the injected dose (the
ratio between 3H radiotracer and 14C in the injected formulation was
1:1). Insignificant differences were found between the 3H and 14C
counts in the spinal cord, kidneys, muscles, blood, pancreas and brain
(Fig. 3). These findings indicate that intact liposomes accumulated in
UN
CO

RR

Fig. 7. Representative images of rabbit brain sections (Frontal lobe, Broca's area) after admi
alendronate dose of 3 mg/kg, Rhodamin-DSPE and 1-hydroxypyrene-3,6,8 trisulfonic acid) or
Note that liposomes were deposited in the brain only after injection of empty liposomes and
Image magnifications, ×40 and ×10. Similar images were obtained in other regions.
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these organs. In contrast, higher counts of 3H than 14C were detected
in the lungs, spleen and liver indicating elimination of serotonin from
these metabolic organs following liposomal degradation and dis-
charge of the drug (Fig. 3).

3.4
^
. Uptake of liposomes by monocytes and neutrophils

To elucidate the role of circulating monocytes and/or neutrophils
in transporting liposomes, confocal microscopy and flow cytometry
were utilized. Endocytosis of liposomes by both circulating monocytes
and neutrophils was detected by confocal microscopy 4 h

^^
post-IV

injection to rabbits (Fig. 4, left). Following incubation of isolated
human monocytes and neutrophils with

^
fluorescent-labeled lipo-

somes, liposomes were endocytosed by both monocytes and neu-
trophils (Fig. 4, right).

Next, we examined the extent of liposome endocytosis by
circulating monocytes and neutrophils (granulocytes). FACS analysis
of
^
rabbits' (n=3) blood 4 h

^̂
post-administration of liposomes labeled

with dextran-
^
FITC (equivalent to a dose of 3 mg/kg alendronate

liposomes), demonstrated that liposomeswere endocytosed by60.1%±
17 and 28.5%±2.1, monocytes and granulocytes, respectively. Further-
more, 24 h

^
and 48 h

^^
post-injection, 16.6%±0.3 and 14.7%±12 of

monocytes, but no granulocytes, endocytosed liposomes, respectively
(Fig. 5).

3.5
^
. Differentiating between monocytes and neutrophils as transporters

to the brain

To differentiate between blood monocytes and neutrophils as the
possible transporters of liposomes to the brain, we examined the
cellular uptake and biodistribution following depletion of monocytes
by liposomal alendronate treatment (3 mg/kg, n=3), which results in
depletion of circulating monocytes [36,37]. Blood monocytes were
depleted following IV injection of alendronate liposomes by, 92.8%±3,
76.3%±9 and 65.7%±9, after 4 h

^
, 24 h

^
and 48 h

^
, respectively, returning

to basal levels after 7 days. In contrast, liposomal alendronate
treatment resulted in increased granulocyte numbers by 50%±8.6,
128.6%±26 and 126.2%±35, 4, 24 and 48 h

^̂
post-injection, respectively

(Fig. 6). Since treatment of isolated human neutrophils with liposomal
alendronate in cell culture had no effect on their viability (data not
shown) it was concluded that liposomal alendronate has no inhibitory
effect on circulating neutrophils.

Additional indirect evidence demonstrating that circulating mono-
cytes are the carriers of the liposomes to the brain was obtained
from an experiment comparing the injection to rabbits of either
nistration of empty fluorescent liposomes (1.5 ml/kg which is equivalent to liposomal
fluorescent liposomes containing alendronate (3 mg/kg), in comparison to saline (n=1).
are markedly reduced after treatment with liposomal alendronate (n=2 in each group).

ain by monocytes following phagocytosis of liposomes, J. Controlled
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fluorescently labeled (1-
^
Hydroxypyren-

^
3,6,8-

^
Trisulfonic acid) alen-

dronate liposomes or empty liposomes (n=2 in each group).
Treatment with liposomal alendronate resulted in no fluorescence in
the brain tissue 4 h

^̂
post-injection (Fig. 7).

^
4. Discussion

Themajor findings of the present study are that negatively-
^
charged

liposomes enter the brain of animals under normal physiologic
conditions in

^
an amount two folds higher than free drug, and that

activated monocytes are the transporters.
We hypothesized that phagocytic cells of the innate immune

system, mainly neutrophils and monocytes could be exploited as
transporters of drugs to the brain. It was expected that the
encapsulation of a drug of choice in liposomes, that are not
hydrophilic, do not have a neutral membrane, and are not an ultra-

^
small size [30,39,40], will result in efficient uptake by phagocyte cells
(monocytes and neutrophils). These liposomes, similar to other
circulating particles, are rapidly cleared by the cells of the MPS,
blood monocytes, neutrophils and macrophages of the liver, spleen,
and bone marrow [38]. The phagocyte cells will transport the drug
across the BBB with the drug then being released from the cells in the
brain. It is expected that if the drug is not metabolized in the lysosome
it will be excreted from the endocytosing cell in the brain. The
formulated liposomes in our work were not specifically targeted to
macrophages as with mannosylated liposomes [7]. Large vesicles
(N1 μm) are known to cause adverse effects after injection accumulat-
ing in the lungs and causing thrombosis [44], whereas vesicles smaller
than 100 nm are prone to non-

^
phagocytic cells escaping the MPS [39].

Since our target cells are circulating monocytes, a liposome size of 100
to 250 nm is preferable because vesicles larger than 100 nm are
eliminated from the blood stream exclusively by monocyte/macro-
phage uptake [30,45]. In addition, the examined liposomal formula-
tion can be filter sterilized.

Brain penetration was evaluated qualitatively by confocal micro-
scopy 4 h

^
following IV injections of fluorescently double-

^
labeled

liposomes. It was demonstrated that liposomes crossed the BBB in
intact animals (Fig. 1).

Serotonin (5-
^
Hydroxytryptamine) is a chemical neurotransmitter

of the central and peripheral nervous system, but it does not cross the
BBB [41]. As expected, the biodistribution of serotonin was signifi-
cantly altered when administered in liposomes (Table 1). A signifi-
cantly higher (two-

^
fold) brain uptake was observed following the

administration of serotonin liposomes in comparison to the free drug
in solution (Fig. 2). These results appear to be in contrast with the
report that only mannosylated liposomes cross the BBB [46]. However,
they studied brain uptake in animals depleted of monocytes. In
addition, the BBB was most probably impeded in the inflammatory rat
encephalomyelitis model utilized, enabling the transport of various
molecules [9,12,13], and the transport was limited to the perivascular
lesions of the CNS [47].

Co-
^
localization images showed that intact liposomes were trans-

ported into the brain (Fig. 1). To validate that intact serotonin liposomes
penetrated the BBB, brain uptake and body distribution of serotonin and
lipids were examined by

^
double-radiolabeled serotonin liposomes (14C

serotonin in the aqueous core, and 3H-
^
lipids in themembrane). The ratio

between 14C and 3H found in the brain following liposomal serotonin
administration was similar to that of the pre-

^
injected formulation,

indicating that liposomes penetrated into the brain as intact vesicles. In
addition to thebrain, the original isotopes ratiowas alsopreserved in the
spinal cord, kidneys, muscles, pancreas and blood (Fig. 3). In contrast,
significantly higher 3H-

^
lipid counts than 14C-

^
serotonin counts were

found in the spleen, liver and lungs. Since liposomes are known to
accumulate extensively in macrophages of these organs [48,49], it is
suggested that following lysosomal degradation serotoninwas released
to the blood followed by urine excretion.
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3To identify the transporting cells of liposomes to the brain
3fluorescently labeled liposomes were injected to rabbits and incu-
3bated with human monocytes and neutrophils. Liposomes were
3endocytosed by both monocytes and neutrophils, but a higher uptake
3was noted in the former cells (Figs. 4 and 5). Since liposomal
3alendronate treatment resulted in a reduced number of monocytes
3and an increased number of granulocytes (neutrophils), which was
3accompanied with no brain uptake (Fig. 7), it is suggested that
3monocytes are the transporters of liposomes to the brain.
3Despite the

^
two-fold higher uptake of serotonin following its

3administration in liposomes vs. in solution, the clinical relevance is
3limited. An order of magnitude or more of brain uptake seems
3required to serve as a viable solution for brain drug delivery. Since
3several studies demonstrate increased passage of immune cells across
3the BBB in various pathological conditions [50,51], including multiple
3sclerosis [52,53] and Alzheimer's disease [54], the suggested delivery
3systems might be found more effective in brain-

^
associated inflam-

3matory disorders. It should also be noted that experimental
3treatments with ‘conventional’ liposomes might be associated with
3CNS side effects, depending on the drug type and potency, since the
3liposomes are transported to the brain.

3
^
5. Conclusions

3IV administration of negatively-
^
charged serotonin liposomes

3exhibited two times higher uptake than the free drug. Intact liposomes
3were transported to the brain of rats and rabbits. The encapsulation of
3serotonin in liposomes did not affect liposome transport to the brain.
3The biodistribution of serotonin was altered following its administra-
3tion in liposomes, and circulating monocytes were identified as the
4main carriers of liposomes to the brain.
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